If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+17x=0
a = -16; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·(-16)·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*-16}=\frac{-34}{-32} =1+1/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*-16}=\frac{0}{-32} =0 $
| (h+9)^2=3 | | -4=x^2-5x-19 | | 53+73+x=180 | | -5x=-12x+56 | | 149+107+x=180 | | 1.75x+3.5=3.24 | | 1.75x+3.5=3.25-8.5 | | 2/x+7=9 | | 5h+5=11 | | 13y+56=6y | | 28-s=25 | | (x-1)^2-112=0 | | 4n^2-4n-1=0 | | x*0.75=50 | | 6x^2-60x+175=0 | | -.00635x^2+4x=-60 | | (m)+(m+2)+(m+4)=0 | | x=18=2x=-21-2x-26 | | 5x(-3x)-6x=-1 | | -2(2x+1)=(-3+1) | | 15-5x=55 | | 9+90x=8+98x | | 90+9x=98+8x | | 9+99x=8+98x | | a^2-2a=3364 | | 3/4d=-6 | | 99+9x=98+8x | | (30+2x)(12+2x)=1288 | | -4x/3-3=-19 | | 21x+7-23x=5-8 | | (x+3)/2=(2x-1)/3 | | 35=2x+9 |